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Abstract (< or = 250 mots) 

As a renewable energy source, photovoltaic (PV) systems can help reduce environmental 

impacts from fossil fuel usage. However, PV conversion efficiencies remain relatively low. 

Power electronics controllers play a vital role in optimizing PV system efficiency and 

performance. This study investigates using sliding mode control techniques to improve 

tracking of the maximum power point (MPP) in PV systems. Sliding mode offers robustness 

and stability benefits for power converters. Both single-loop and two-loop control architectures 

are examined. The single-loop scheme extracts MPP rapidly without needing a defined 

reference, while the two-loop includes both MPP tracking and search control loops. For the 

two-loop search, an optimized version of Cuckoo algorithm is proposed. The PV system 

models and controllers are simulated  to compare performance. The single-loop controller 

reacts quicker under uniform conditions but can get trapped at local maxima. The two-loop 

controller converges on global MPP better under partial shading. Further opportunities exist to 

address practical implementation challenges of the sliding mode PV controllers. 
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1- Introduction 

The conventional energy sources have limited reserves with climate concerns. Thus, the 

world is moving towards renewable energy sources (RESs). The RESs provide clean energy to 

address the concerns raised by conventional energy sources [1] . Increasing the share of 

renewable energy sources like photovoltaics (PV) can help reduce environmental impacts from 

conventional fossil fuels. In island nations like Madagascar, PV offers potential to electrify 

rural communities lacking grid connections. However, barriers remain due to the low 

conversion efficiency and high costs of PV systems. Advances in PV materials and 

manufacturing continue to reduce costs. Further innovations in power electronics and controls 

are needed to maximize efficiency and performance. 

This study focuses on boosting PV output via optimized maximum power point tracking 

(MPPT). MPPT dynamically tunes the system operating point to extract maximal power as 

conditions like solar irradiation variation. The power converters regulating PV output require 

effective control strategies to achieve MPPT. In literature, several researchers are working to 

build successful models for MPPT techniques incorporated in solar PV systems for the supply 

of grid or isolated DC loads . Some of these works are presented in [2] [3] [4] [5] [6] [7].  Here, 

sliding mode control techniques are investigated for their stability and robustness advantages 

in power electronics applications. Both single-loop and two-loop control architectures are 

examined. The single-loop MPPT control scheme  was introduced in the work of [8] [9] . It has 

the particularity of having a limited number of voltage sensors. The two-loop scheme includes 

MPPT control as well as the MPP search algorithm. The interaction between the two loops 

must be considered in the design. The control of the MPP must be fast compared to the search. 

This scheme was proposed in the work of  [5]. A key question is whether the simpler single-

loop system can provide adequate MPPT, or if a more complex two-loop controller with 

explicit searching is necessary. For the two-loop MPPT search, this work introduce a new 

version of  a deterministic Cuckoo optimization algorithm. Comparative simulations assess the 

performance tradeoffs between the two control approaches. 
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2- Methodology 

2.1. Description of the system and control methods 

2.1.1.  Sliding mode control (SMC) for single-loop MPPT  

The current-voltage behavior of a PV cell can be represented by the single diode model, 

accounting for photon generated current, diode forward bias current, and parasitic resistances. 

Environmental factors like irradiance and temperature strongly influence the IV curve and 

power output. 

Consider a boost converter connected to a PV panel with a resistive load as shown in Fig. 3. 

The system can be described in two sets of equation depending on the state of transistor .  

In discontinuous mode,  the differential equation can be written as (1) 

{
𝑖̇𝐿1

̇ =
𝑉𝑃𝑉(𝑖𝐿)

𝐿
−

𝑉0

𝐿

V𝑜1
̇ =

𝑖𝐿

𝐶
−

𝑉𝑜

𝐶𝑅𝐿

    (1) 

In conduction mode, the differential equation can be written as (2) 

{
𝑖̇𝐿2

̇ =
𝑉𝑃𝑉(𝑖𝐿)

𝐿

V𝑜2
̇ = −

𝑉𝑜

𝐶𝑅𝐿

    (2) 

Using the state- space averaging method, equations (1) and (2) can be combined into a set of 

equations of state to represent the dynamics of the system.  Considering that the transistor is 

controlled by pulse width modulation (PWM), the duty cycle of the switching control is defined 

by ẟ, the equation of state to represent the dynamics of the system is defined by (3). 

{
𝑖̇�̇� =

𝑉𝑃𝑉(𝑖𝐿)

𝐿
−

𝑉0

𝐿
+

𝑉𝑜

𝐿
ẟ

V�̇� =
𝑖𝐿

𝐶
−

𝑉𝑜

𝐶𝑅𝐿
−

𝑖𝐿

𝐶
ẟ

    (3) 

where C is the capacitance, L is the inductance, RL is the resistive load, ẟ ε [1 0] is the duty 

cycle, which is also the command input. Vo is the output voltage and iL is the inductor current.  

Considering Fig. 2, the sliding surface is defined by  
𝑑𝑃𝑃𝑉

𝑑𝐼𝑝𝑉
= 0 . This ensures that the state of 

the system reaches the surface and will produce maximum power output.  

𝑑𝑃𝑃𝑉

𝑑𝐼𝑃𝑉
=  𝐼𝑃𝑉 (2𝑅𝐿 +  𝐼𝑃𝑉

𝑑𝑅𝐿

𝑑𝐼𝑃𝑉
) = 0    (4)   

where 𝑅𝐿 =
𝑉𝑃𝑉

𝐼𝑃𝑉
 is the load and  et IPV = iL . 

If IPV≠0, then the sliding surface S is expressed by: 

𝑆 ≜ 2𝑅𝐿 + 𝑖𝐿
𝑑𝑅𝐿

𝑑𝐼𝐿
     (5) 



 

4 
 
 

 

International Journal of Engineering, Sciences and Technologies 

ISSN : 3079-2045 

https://www.ij-est.org/ Volume 2, issue 3, https://doi.org/10.70961/AXUG6548 

 

 

Volume 2, issue 3, https://doi.org/10.70961/AXUG6548 

 

 

ISSN : 3079-2045 

The duty cycle can be written as:  

ẟ′ = {
ẟ + ∆ẟ  𝑝𝑜𝑢𝑟 𝑆 > 0
ẟ − ∆ẟ  𝑝𝑜𝑢𝑟 𝑆 < 0

    (6) 

The equivalent control function is determined from (7) 

�̇� =  [
𝑑𝑆

𝑑𝑋
]

𝑇

�̇� = [
𝑑𝑆

𝑑𝑋
]

𝑇

( 𝑓(𝑋) + 𝑔(𝑋) ẟ𝑒𝑞

̇
) = 0    (7) 

Taking into account the Eq. 4, the equivalent control can be written  by (8) 

ẟ𝑒𝑞 = − 
[

𝑑𝑆

𝑑𝑋
]

𝑇
 𝑓(𝑋)

[
𝑑𝑆

𝑑𝑋
]

𝑇
𝑔(𝑋)

=  1 −  
𝑉𝑃𝑉(𝐼𝐿)

𝑉0
     (8)  

where 0≤ ẟ𝑒𝑞≤1 

The actual control function can be expressed as a function of Eq. 8: ẟ𝑒𝑞 

ẟ𝑟 =  {

1                                       ẟ𝑒𝑞 + 𝑁𝑆 ≥ 1

ẟ𝑒𝑞 + 𝑁𝑆                 0 < ẟ𝑒𝑞 + 𝑁𝑆 < 1

0                           ẟ𝑒𝑞 + 𝑁𝑆 ≤ 0                 

    (9) 

N is a constant, the control is between ẟ𝑒𝑞 and NS, ẟ𝑒𝑞 is required to reach the surface �̇� = 0 

and NS tracks the MPP.  

Conditions of accessibility to the sliding surface S  

The Eq. 7 can be rewritten  

�̇� = ( 3
𝑑𝑅𝐿

𝑑𝐼𝐿
+ 𝐼𝐿

𝑑2𝑅𝐿

𝑑𝐼𝐿
2 )(−

𝑉0

𝐿
(1 − 𝛿) +

𝑉𝑃𝑉(𝐼𝐿)

𝐿
) 

̇
    (10) 

Accessibility to the sliding surface is achieved for 𝑆�̇� < 0 under the following control 

conditions 

𝑶 < ẟ𝒓 < 𝟏,  �̇� =
𝑉0

𝐿
 𝑁𝑆   (11) 

As �̇� < 0, then 𝑆�̇� < 0. Access to the sliding surface is obtained for 𝑂 < ẟ𝑟 < 1, 

ẟ𝒓 = 𝟏,  �̇� =
𝑉𝑃𝑉(𝐼𝐿)

𝐿
> 0   (12) 
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As �̇� < 0, let consider two cases :  

(1) if ẟ𝑒𝑞 = 1, then 𝑉𝑃𝑉(𝐼𝐿) = 0. Considering Fig. 6, the system is therefore to the left of 

the MPP where S<0 . Then  ẟ𝑒𝑞 + 𝑁𝑆  will be less than 1 , which is contradictory for  

ẟ𝒓 = 𝟏 

(2) if ẟ𝑒𝑞 < 1 and ẟ𝑒𝑞 + 𝑁𝑆 ≥ 1, then S>0 ,  𝑆�̇� < 0 

ẟ𝒓 = 𝟎,  �̇� = −
𝑉0

𝐿
+

𝑉𝑃𝑉(𝐼𝐿)

𝐿
< 0   (13) 

In this case, the output voltageV0 is greater than à VPV, this implies �̇� < 0. 

Let consider two cases :  

(1) if ẟ𝑒𝑞 = 0, this implies 𝑉𝑃𝑉(𝐼𝐿) = 𝑉0. In this case the panel is considered to be 

connected directly to the load and S>0 . This case is contradictory to have ẟ𝒓 = 𝟎 

(2) if ẟ𝑒𝑞 > 0 and ẟ𝑒𝑞 + 𝑁𝑆 ≤ 0, this implies S<0 then 𝑆�̇� < 0 

In summary, the existence of the MPP is guaranteed by using the control ẟ𝑟 of Eq. 9.  To avoid 

controller saturation for ẟ𝑟 = 0 and ẟ𝑟 = 1, the value of the constant N must not be large, such 

that  𝑁 ≤
1

|𝑆|𝑚𝑎𝑥
 . |𝑆|𝑚𝑎𝑥 is the absolute value of the maximum value of S. It is reached when 

ẟ𝑒𝑞 = 0 . |𝑆|𝑚𝑎𝑥 ≈ 𝑅𝐿   (14) 

Thus to avoid saturations N must be chosen such that 𝑵 ≤
𝟏

𝑹𝑳
 

2.1.2. Sliding mode control with two-loop for MPPT 

The sliding-mode control for a two-loop scheme can be expressed as: 

𝛿 = 𝛿𝑒𝑞 +  𝛿𝑟    (15) 

𝛿𝑒𝑞 = 1 −  
𝑉𝑃𝑉

𝑉0
    (16) 

𝛿𝑟 =  −𝑁 𝑠𝑔𝑛 (𝑆)   (17) 

where N>0 

𝑆 = 𝐼𝐿 −  𝐼𝑀𝑃𝑃    (18) 

where 𝐼𝑀𝑃𝑃 is the MPP current 



 

6 
 
 

 

International Journal of Engineering, Sciences and Technologies 

ISSN : 3079-2045 

https://www.ij-est.org/ Volume 2, issue 3, https://doi.org/10.70961/AXUG6548 

 

 

Volume 2, issue 3, https://doi.org/10.70961/AXUG6548 

 

 

ISSN : 3079-2045 

The conditions of accessibility to the sliding surface is obtained for 𝑆�̇� < 0.  

Considering the function  𝑉 =  
1

2
𝑆2. 

With Eq. 7, we have : 

�̇� = 𝑆�̇� = ( −(1 − 𝛿)𝑉0 +  𝑉𝑃 + 𝐾)
1

𝐿
𝑆  (19) 

where K is constant 

Consider the Eq. (15), (16) et (17), we have  

�̇� =  
1

𝐿

̇
(−𝑁|𝑆|𝑉0 + 𝐾𝑆)   (20) 

�̇� <  
1

𝐿

̇
(−𝑁|𝑆|𝑉0 + |𝐾||𝑆|)   (21) 

�̇� <  
1

𝐿
|𝑆|

̇
(−𝑁𝑉0 + |𝐾|)   (22) 

Accessibility to the sliding surface is ensured for:  

𝑵 >  
|𝑲|

𝑽𝟎
     (23) 

This condition is not met for t=0 because 𝑉0 can be equal to 0. But it will be assured once the 

boost converter works because 𝑉0 > 𝑉𝑃𝑉. 

2.1.3. Determination of IMPP based on the Cuckoo search algorithm 

Cuckoo Search (CS) was first proposed by [10] . The algorithm emulates the strategy 

of aggressive breeding of cuckoo birds. Compared to other techniques, CS has proven to be 

more robust, has better convergence and is more effective. [11]. In the context of the sliding 

mode control MPPT and giving the parameter of accessing the sliding surface, the structure of 

the CS algorithm is shown in Fig. 5 . The structure take example of the Hill Climbing method, 

but does not include Levy's flight step  [12].  

The principle is as follows:  

1- The current from the PV panel is measured at three times 𝐼𝑖 = 𝑘𝑖𝐼𝑠𝑐  

2- Sort in ascending order the powers at the currents taken,   
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- 𝑃(𝐼𝑎) ≥ 𝑃(𝐼𝑏) ≥ 𝑃(𝐼𝑐) 

3- if Ia is on the mostright or leftmost, modify the currents as follows: 

- {

𝐼𝑎,𝑛𝑒𝑤 = 𝐼𝑎

𝐼𝑏,𝑛𝑒𝑤 = 𝐼𝑏 +  𝜀(𝐼𝑎 − 𝐼𝑏

𝐼𝑐,𝑛𝑒𝑤 = 𝐼𝑎 +  𝜀(𝐼𝑎 − 𝐼𝑏,𝑛𝑒𝑤)
)  (24) 

- 𝜀 > 0 is a constant 

Else 

- {

𝐼𝑎,𝑛𝑒𝑤 = 𝐼𝑎

𝐼𝑏,𝑛𝑒𝑤 = 𝐼𝑏 +  𝜀(𝐼𝑎 − 𝐼𝑏

𝐼𝑐,𝑛𝑒𝑤 = 𝐼𝑐 +  𝜀(𝐼𝑎 − 𝐼𝑐)
)  (25) 

 

4- The values of Ia, Ib,  Ic  must be between  

- [0.01𝐼𝑠𝑐 , 0.99𝐼𝑠𝑐] 

- if 𝑚𝑎𝑥{|𝐼𝑎 − 𝐼𝑏|, |𝐼𝑎 − 𝐼𝑐|} < 0.01 , stop the search  

 

3- Results 

 

The PV panel model, the boost converter model with the SMC control with one and two 

loops for the MPPT is simulated under Orcad PSPICE. Figure 3 shows the circuit 

corresponding to the simulation. Simulation parameters are presented in Tables I and II.  

By performing a transient simulation, Fig. 4 illustrates the result of MPP monitoring with 

irradiance 500 to 1000 W/m2 at the same temperature of 300 K and a resisitive load of 150 Ω. 

The system reaches the steady state of both irradiance levels in the millisecond range for the 

one-loop scheme. 

For the two-loop scheme, in order to track and avoid transient fluctuations, the tracking 

loop must be faster than the search loop. Therefore, the search loop period is selected as 30ms, 

which is greater than the tracking loop stabilization time. Figure 5 shows that the two-loop 

scheme converges to the MPP in 270 ms.  

 

4- Discussion 

 

In this study, a switched system model was introduced to design a maximum power tracking 

controller for photovoltaic systems based using sliding mode control approach by choosing the 
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area defined by 
𝑑𝑃𝑃𝑉

𝑑𝐼𝑃𝑉
= 0.  The stability of the control system was also studied. Unlike other 

approaches in the literature, such as presented in [13], no desired reference was required with 

the one-loop scheme and it was verified through simulation that this scheme is robust to the 

operating conditions and parameter changes of photovoltaic cells. On the other hand, the 

deterministic Cuckoo (SC) search algorithm was used for the determination of the maximum 

power point in the two-loop scheme. It is shown that the one-loop scheme has faster responses 

than the two-loop scheme. However, since the single-loop is primarily designed for uniform 

irradiance conditions, it will work with the local power point. The two-loop scheme converges 

to the MPP and shows better responses in partially shaded conditions.  

 

There are some practical problems with the implementation of SMC for DC-DC converters. 

Issues such as the requirement for constant operation of the switching frequency in the SMC 

and the need to redefine the slip coefficients to meet the practical constraints of the components 

have been addressed in some previous studies. [14] . Aspects related to the implementation of 

SMC controllers should be further studied in order to obtain sufficient information to design 

practical SMC controllers for DC-DC converters. First the choice of system state variables, i.e. 

voltage, current, their derivatives and/or integrals, is important because it affects the 

performance of the control as well as the complexity of the implementation.  In addition, for 

PWM-based SM controllers, indirect implementation of the original SM control law can lead 

to an unexpected complication in signal calculation and is therefore not always implementable. 

Therefore, the choice of state variables is essential for the successful implementation of the 

controller. 

 

5- Conclusion 

 

Simple single-loop sliding mode MPPT offers very rapid tracking but risks local maxima 

under partial shading. The addition of a Cuckoo search algorithm enables the two-loop 

controller to converge on the global maximum power point at the cost of greater complexity. 

This tradeoff between tracking speed and search optimality warrants further investigation. 

Advancing sliding mode controllers could help unlock the full potential of PV systems to 

provide clean and affordable electricity globally but further studies must be done for practical 

implementation. 
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7- Tables 

 

Table I: Photovoltaic module parameters 

Parameter Value Parameter Value 

IL 5.981* 10-8 (A) A 1.2 

Isc 3.81 ( A) Eg 1.21 ( eV) 

Tcell 298 (K) Rs 3 Ω 

k 1.38 * 10-23 ( J/K) Rp 10MΩ 

q 1.6 * 10-19 ( C)   

 

Table II: The calculated values of the MPP 

 

G ( W/m2) VMPP ( V) IMPP (A) PMPP= VMPP*IMPP (W) 

200 30.7 0.63 19.34 

400 30.8 1.26 38.80 

600 30.38 1.87 56.81 

800 29.7 2.46 73.06 

1000 28.84 3.04 86.67 
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8- Figures 

 

 

 

 

Figure 1: Sliding control (a) one-loop and (b) two-loop 

 
 

 
 

Figure 2: Duty cycle vs region of operation 
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(a) 

 

(b) 

 

Figure 3: (a) Boost converter with (a) one loop SMC, (b) two loop SMC 

 

 

 

Figure 4: One loop scheme SMC response to G 500 to 1000W/m2 , T= 300K 
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Figure 5: Optimized Cuckoo search (SC) algorithm 

 

 

Figure 6: Two loop scheme response to G from 500 to 1000 W/m2 , T=300K 
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