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Abstract 

 

In this work, we are interested in exploiting the various parametric sensitivity analysis methods 

for its application to a circular reinforced concrete column subjected to a centered compression 

force. The equilibrium equations governing the structure are prescribed by the French BAEL 91 

rules as a function of input variables linked to the loads on the structure, to the mechanical 

properties of the materials, and variables linked to the geometry of the part under study. On the 

one hand, the Morris or screening method enabled us to extract the sensitivity matrix of the 

physical model studied. After reading and interpreting Mohr's diagram, we saw that the diameter 

of the column is a highly influential parameter, and that the characteristic strength of the concrete 

has a linear influence on the load-bearing capacity of the column. 

On the other hand, methods based on analysis of variance or ANOVA enabled us to carry out a 

more in-depth analysis and quantitative evaluation in order to study the behavior of each model 

input variable and rank them in order of influence on the output. By interpretation of the Fourier 

spectra, post diameter is the most important variable, with a spectral amplitude of 66.68 dB/Hz, 

i.e. a degree of influence of around 61.04% on load-bearing capacity. In conclusion, sensitivity 

analysis is a very formidable and reliable mathematical tool, demonstrated throughout this work. 

Its application is highly recommended to engineers when predimensioning reinforced concrete 

structures. 
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1- Introduction 

 

Today, reinforced concrete is a material widely used in construction engineering. Numerous 

studies and research studies on concrete have been carried out by various researchers around the 

world, but there are still a number of questions surrounding behavior, evaluation methods and 

parameter sensitivities. It is for this reason that this work has been undertaken. 

In this work, we have chosen a reinforced concrete column, as this is an essential element in 

ensuring the stability of a structure and the transmission of forces to the foundation. 

  Parametric sensitivity analysis is a mathematical modeling tool for determining, 

quantifying and analyzing how the outputs of a physical model react to perturbations in its input 

variables [1]. 

The introduction of parametric sensitivity analysis methods into the design of reinforced 

concrete structures is considered an essential and inescapable step in the proper dimensioning of 

future structures. This step is also of interest during pre-dimensioning, as it takes into account the 

degree of influence of all input parameters, especially those related to the geometry of the structure. 

The aim of this work is to develop a computer and mathematical tool to classify the input 

variables according to their degree of influence on the load-bearing capacity of a reinforced 

concrete column, in order to analyze the behavior of the physical model with regard to elastic 

instability phenomena. 
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2- Methods 

 

2.1.  Formulation of load-bearing capacity 

 

In this work, let's consider a circular reinforced concrete column shown in Figure 1 The design 

rules governing the structure are prescribed by the French BAEL 91 rules [2]. 

 

The column is considered to be in central compression if :  

➢ the maximum value of the straightness imperfection given in article B.8.4.1 is                   : 

𝑒 < max(1𝑐𝑚, 𝐿𝑓 500⁄ )  with  𝐿𝑓 = buckling length ; 

➢ the moment at the head of the column (embedding of the beams) causes only a slight 

eccentricity: article B.8.2.1 of the BAEL 91 rule. 

 

Reinforced concrete structural elements subjected to simple compression loading will be 

considered as columns under centered loading, provided the above conditions are met. This is the 

usual case for standard buildings. 

The slenderness λ of a column is the ratio of its buckling length Lf to the radius of gyration 

i of the straight concrete section alone, calculated in the buckling plane. 

For a circular column of diameter D, we have : λ = 
4𝐿𝑓

𝐷
        (1) 

The buckling length Lf is determined from Figure 2 for an insulated column and from Figure 

3 for a reinforced concrete-frame building. 

 

Table 1. shows the different types of column compression as a function of slenderness. 
 

 

The BAEL 91 rule (art.B.8.4,1) provides us with a fixed formula giving the ultimate normal force 

that a BA column with a slenderness of less than 70 can support. 

𝑵𝒖𝒍𝒊𝒎 = 𝜶[
𝑩𝒓𝒇𝒄𝟐𝟖

𝟎,𝟗𝜸𝒃
 +

𝑨𝒔𝒇𝒆

𝜸𝒔
]       (2) 

Where Br = 
π(D−0.02)²

4
  is the concrete section reduced by deducting 1 cm from the 

circumference of the straight section of a circular column with diameter D ; 
 

        𝐴𝑠is the longitudinal steel cross-section ; 

         𝛼 is a coefficient that takes into account the slenderness λ of the column : 

𝛼 =   
0,85

1+0,2(𝜆/35)²
     𝑖𝑓𝜆 ≤ 50                    (3) 

𝛼 =   0,6(
50

𝜆
)²     𝑖𝑓50 < 𝜆 ≤ 70              (4) 

Figure 4 shows the crushing at the top of a reinforced concrete column subjected to axial 

compression. 

 

According to article A.4.3, 41 of BAEL 91, γb is the partial safety coefficient for concrete, which 

is 1.5 for fundamental combinations (A.3.3,21) and 1.15 for accidental combinations (A.3.3,22). 
 

2.2.  Parametric sensitivity analysis 
 

2.2.1.  Generality 
 

Consider a mathematical model, formed by a set of random input variables aléatoires                  𝑋 =
(𝑋1, … . . 𝑋𝑝) and a set of random output variables (or responses) Y. We write this model in the 

following form: 
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𝒇 ∶  |𝐑
𝐩
→  |𝐑 

                                              𝑿 → 𝐘 = 𝐟(𝐗)                                             (4)                 

Sensitivity analysis studies how disturbances on the model's input variables X generate 

disturbances on the response variable Y.  

 

Sensitivity Analysis can therefore be said to be a mathematical tool for studying the 

influence of parameters on the model: influential parameters, non-influential parameters and 

parameters that interact with each other [3] [4] [5]. 

Sensitivity analysis methods can be grouped into three classes: 

 

o Screening methods : which consist of a qualitative analysis of the sensitivity of the output 

variable to the input variables;  

o o local sensitivity analysis methods : which quantitatively assess the impact of a small 

variation around a given input value;  

o o global sensitivity analysis methods : which look at the variability of the model's output 

over its entire range of variation. 

 

2.2.2.  Sreening methods 

 

Screening" methods qualitatively analyze the importance of input variables on the variability 

of model response. The aim of these methods is initially to isolate the parameters that have the 

greatest influence on the results, and thus to reduce the number of parameters to be analyzed using 

more sophisticated and/or more expensive methods. 

The MORRIS method or screening method is a qualitative one, it only identifies influential 

parameters. In other words, it does not allow factors to be ranked in order of importance, but on 

the other hand it requires little simulation. 

The various stages of this method are as follows: 

➢ Factor standardization :  𝑥𝑖𝜖[−1: 1] ; 
➢ Choice of k values for each factor xi ; 

➢ Choice of r factor sets: 𝑟 ≤ 𝑘 − 1 ; 

➢ Calculation of  𝑑𝑖
𝑗
 which is an estimate of 

𝜕𝑌

𝜕𝑥𝑖
|
𝑥=𝑥(𝑗)

 

𝑥(𝑟) = {𝑥𝑛 …𝑥𝑚}  𝑟è𝑚𝑒  standardized factor sets 

With :   

  

➢ Evaluation of the sensitivity matrix  (dim : r x p) : d = 

[
 
 
 𝑑1

1 ⋯

𝑑1
2 ⋯

⋯ 𝑑𝑝
1

⋯ 𝑑𝑝
2

⋯ ⋯
𝑑1

𝑛 ⋯
⋯ ⋯
⋯ 𝑑𝑝

𝑛]
 
 
 

 

➢ calculation of the mean and standard deviation of the di for each factor ; 

➢ Drawing in the MOHR plane of {𝜇(𝑖), 𝜎(𝑖)}  following Figure 5 
 

 

The graph can be interpreted as follows : 

 If 𝜇 is high, the parameter is linearly very influential; 

 If 𝜎 is high, the parameter is very important non-linearly; 

 If 𝜇 and 𝜎 are low, the parameter is non-influential; 

j

i

jjn

j

ijijj

i
x

XYxxxxY
d



−+
=

)(),...,...( 1)(
Where     ∆𝑥𝑖

𝑗
= 𝑥𝑖

𝑗+1
− 𝑥𝑖

1    
(5)     

 



 

 
 

 

International Journal of Engineering, Sciences and Technologies 

ISSN : 3079-2045 

https://www.ij-est.org/ 

Volume 2, issue 3, https://doi.org/10.70961/WRZK6238 

 

 

 

Volume 2, issue 3, https://doi.org/10.70961/WRZK6238 

 

ISSN : 3079-2045 

 If 𝜇 and 𝜎 are high, the parameter is influential. 

 

2.2.3.  Global sensitivity analysis 

 

Local analysis can be distinguished from global analysis in the following way: local analysis 

is based on the derivative of the output with respect to the factors and focuses on the value of the 

response, while global analysis is based on analysis of variance (ANOVA) and focuses on its 

variability. 

In this work, we are specifically interested in variance-based methods that calculate global 

sensitivity indices to quantify the influence of different input parameters on the variability of a 

numerical model's response. 

 

a. Classic FAST method 

 

FAST stands for Fourier Amplitude Sensitivity Test, and uses the multidimensional Fourier 

transform of f to obtain a variance decomposition of Y.The principle of this method is to replace 

the multidimensional decompositions with one-dimensional decompositions along a curve 

traversing the input space [0,1]𝑝. 

This curve is defined by a set of parametric equations : 

𝑋𝑖(𝑠) = 𝐺𝑖[sin(𝑓𝑖𝑠)]          𝑠𝜖[−𝜋, 𝜋]                               (10) 

𝑓𝑖 : set of linearly independent integer frequencies ; 

𝐺𝑖 : functions to be determined, allowing uniform overlap of [0,1]𝑝 and verifies the differential 

equation : 

                            𝜋√1 − 𝑢2𝑃𝑖 
𝑑𝐺𝑖(𝑢)

𝑑𝑢
 = 1                                                       (11) 

With  𝜖[−1,1] and Pi is the probability density of Xi. 

 

- Number of simulations 

To avoid spectrum aliasing, the minimum number of simulations for sensitivity index evaluation 

is given by the Nyquist-Shannon condition: 

                                     𝑁 ≥ 2𝑀 max(𝑓𝑖) + 1                                         (13) 
In other words, a periodic signal whose spectrum admits a maximum frequency must be sampled 

at a frequency strictly greater than twice the maximum frequency. 

 

- Variance estimation 

If we assume that 𝑓1 ≤  𝑓2 … ≤𝑓𝑘 . Also in this case, the variance estimated for Y by Parseval's 

relation is : 

𝑉(𝑌) =
1

2
∑(𝐴𝑛

2

𝑁

𝑛=0

+𝐵𝑛
2)(14) 

Where 𝐴𝑛 et  𝐵𝑛 are the Fourier coefficients defined by : 

𝐴𝑛 =
2

𝑁
∑𝑌(𝑠𝑖) ∗ 𝑐𝑜𝑠

𝑁

𝑗=1

(2𝑛𝜋𝑠𝑗)(15) 

𝐵𝑛 =
2

𝑁
∑𝑌(𝑠𝑖) ∗ 𝑠𝑖𝑛

𝑁

𝑗=1

(2𝑛𝜋𝑠𝑗)(16) 

With  𝑠𝑗 = 
2𝑗𝜋

𝑁
   et  j=1,…,N 

 

- Principal effects 
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The first-order sensitivity index defined by 𝑆𝑖 = 
𝑉[𝐸(𝑌|𝑋𝑖)]

𝑉(𝑌)
  measures the proportion of variance 

due to Xi alone. 

The numerator is calculated by the classic FAST method as the sum of the harmonics : 

𝑉𝑖 = ∑(𝐴𝑛𝑓𝑖
2

𝑀

𝑛=1

+𝐵𝑛𝑓𝑖
2 )(17) 

So :  
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+

+

=
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BA
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1

22

1

22

)(

)(2

                          (18) 

The advantage of this method is that it allows all the main effects to be determined in a single set 

of N simulations. 

 

b. Sobol method 

 

Let be the function 𝑌 = 𝑓(𝑋) 

Generate a base sample 𝑋𝑏of N factor combinations, then calculate the base output variable 𝑌𝑏 

 

- Principal effects 

 

To calculate the main effects, we generate another sample 𝑋𝑝𝑖of N factor combinations by 

modifying all the factors except the one under study with respect to the base sample, thus obtaining 

an output variable 𝑌𝑝𝑖 

The principal effect is given by the following relationship: 
 

)var(

]2/)var[(
1

b

bpi

pi
Y

YY
S

−
−=                     (19) 

- Total effects 

 

To calculate the total effects, we generate another sample 𝑋𝑇𝑖 of N factor combinations, keeping 

the initial combinations of values for all factors except the one under study, to obtain the output 

variable 𝑌𝑇𝑖 

The total effect is given by the following relationship: 
 

)var(

]2/)var[(

b

bTi
Ti

Y

YY
S

−
=                      (20)

 
- Sobol function 

The Sobol benchmark is defined as follows:  

𝑌 = ∏
|4𝑋𝑗 − 2| + 𝑎𝑗

1 + 𝑎𝑗

𝑝

𝑗=1

(21) 

 

With  𝑎𝑗  ∈  [0 ∶ 99] is a (Sobol) parameter associated with the factor 𝑋𝑗 

 

The Sobol function can be used to check the sensitivity index values calculated using the various 

sensitivity analysis methods. For the Sobol function, the sensitivity index values can be calculated 
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numerically. Generally speaking, the higher the value of aj, the less influential the corresponding 

parameter. 

 

 

 
c. EFAST method 

 

One disadvantage of the classical approach is that it does not allow the effects of interactions 

between factors to be determined. This can distort the analysis in cases where a factor is not 

influential on its own, but only through interaction with other factors. To overcome this drawback, 

Saltelli et al. have extended the FAST method to the calculation of the total sensitivity index. 

EFAST stands for Extended Fourier Amplitude Sensitivity Test, and is used to determine the 

total effect of a factor on the output of a model... 

 

- How the method works 

 

To achieve this, the authors propose to assign a very high frequency fi to 𝑋𝑖 compared with those 

assigned to the other factors 𝑋~𝑖. 

Thus, the spectrum of the output shown in Figure 6 will have two distinct parts: 

➢  the low frequencies containing the frequencies generated by  𝑋~𝑖, 

➢  the high frequencies containing the frequencies due to 𝑋𝑖 

⇛ As the spectra are symmetrical, the 𝐸(
𝑁

2
) simulations are sufficient to carry out the sensitivity 

study. (E: integer part) 

⇛ If the frequency is found in the spectrum of the output, the factor is influential. 

 

- Total effects 

 

Once the N simulations have been carried out, the total contribution of Xi (whose associated 

frequency is fmax) to the variance of the model response is calculated using the following formula: 





=

+−=

+

+

=
N
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nn
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                                (22) 

 

2.3.  Mathematical modelling 

 

In the following, the column bearing capacity formula will be modelled as a physical model with 

one (01) output and five (05) input variables, with the ranges of variation of each input variable 

summarised in Table 2.  
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3- Results 
 

 

3.1.  Calculation of the load-bearing capacity 

 
 

Let's consider the following assumptions for calculating the column's load-bearing capacity: 

- diameter of the column: D = 0.25 m ; 

- free length of column: Lo = 3.50 m ; 

- longitudinal reinforcement: 6 HA 10 ; 

- characteristic strength of concrete: fc28 = 25 MPa ; 

- yield strength of steel: fe = 400 MPa ; 

- design combinations : fundamental combination ;  

The bearing capacity of the column in centred compression is given by formula 2. Figure 7 shows 

the calculation program on an Excel sheet. 

 

With the above parameters, the load-bearing capacity of the column is 57.67 tonnes. To avoid 

elastic instability, the ultimate load at the top of the column should be less than this value. 

 
3.2.  Simulation using the sreening method 

 
We have already seen that the Morris method is a qualitative method, which does not allow factors 

to be ranked in order of importance. Furthermore, it only identifies influential factors. 

We run the program « poteau_morris.m » with a number of values k = 6 for each factor Xi.  Figure 

8 shows the sensitivity matrix of the model: 

 

⇛ We have a sensitivity matrix with r rows and p columns. 

 Where r = k-1 = 5 is the number of factor sets ; 

        p = 5 is the number of factors.  

So a square matrix of order n = 5. 

 
⇛ From each column of the matrix, we derive the means and standard deviations of each input 

variable. 

 

Thus, Table 3. above allows us to establish Mohr's diagram by putting the mean µ(i) on the abscissa 

axis and the standard deviation σ(i) on the ordinate axis as in Figure 9. 

 
Interpretation: On the one hand, the Mohr diagram shows that parameter X1 has a fairly high 

mean and a very high standard deviation, so it has a strong influence. On the other hand, parameter 

X5 has a very high mean and a very low standard deviation, so it has a linear influence on the 

output. But here, we can't yet classify the parameters according to their order of influence. So, in 

the future, we will have to use ANOVA methods. 

 

3.3.  Simulation using ANOVA methods 

 
In what follows, the EFAST and Sobol methods will be used to calculate sensitivity indices for 

each input variable in order to rank these parameters in order of importance on the output of the 

model under study. 
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3.3.1.  Using the EFAST method 

The simulation parameters are : 

M = 4: interference order ; 

k = 5: number of parameters; 

fe = 2 x 4 x (5-1) = 32: the highest frequency used; 

Low frequencies vary from 1 to 
𝑓𝑒

2𝑀
= 4 

N = 2 x 4 x 32 + 1 = 257: minimum simulation required (Shannon criteria) 

 

We run the « poteau_efast.m » program with 257 simulations, assigning a high frequency equal 

to 32 to the parameter we want to study and low frequencies varying from 1 to 4 for the other 

factors. 

After simulation, the output spectra for each sampled parameter are shown in the following figures: 

 

- Sampling of variable X1  

In Figure 10, two peaks are observed in the frequency zone generated by sampling the variable 

X1. The first is at a frequency of 1.988 Hz with a high amplitude of 66.68 dB/Hz. The second peak 

is at a frequency of 3,977 Hz with a low power of 2,705 dB/Hz. 

As an interpretation, the first peak indicates a significant influence of the X1 variable on the model 

output and the second peak shows a significant interaction effect of the X1 factor with the other 

factors. 

 

- Sampling of variable X2 

In Figure 11, a single peak is observed in the frequency zone generated by sampling variable X2. 

It is located at a frequency of 1.988 Hz with a fairly high amplitude of 24.55 dB/Hz, which 

indicates a significant influence of the X2 variable on the model output. 

 

- Sampling of variable X3 

In Figure 12, a weak peak is observed at the frequency of 1.988 Hz with a low amplitude of 7.634 

dB/Hz, which indicates a non-negligible influence of the variable X3 on the model output. 

 

- Sampling of variable X4 

In Figure 13, no peak is observed in the frequency zone generated by sampling the X4 variable. 

This means that this variable has no significant influence on the model output. 

 

- Sampling of variable X5 

In Figure 14, a single peak is observed at a frequency of 1.988 Hz with a low amplitude of 8.075 

dB/Hz, indicating that the X5 variable has little influence on the model output. 

 

3.3.2.  Using Sobol method 

 

The  « poteau_sobol.m » program was run with 1000 simulations, and the sensitivity indices were 

calculated using the Sobol method. Table 4. shows the sensitivity indices calculated: 

From Table 4. shows that parameter X1 has a strong influence on the output, both on its own, with 

a main sensitivity index of 0.54, and through interaction with the other parameters, with a total 

sensitivity index of 0.67. Figure 15 shows the Sobol graphs for the column bearing capacity. 

 

In the graphs in Figure 15, the space (yellow) between the main effect and the total effect of a 

parameter represents the interaction effect. Thus, we can see a significant interaction between the 

parameters X1, X2 and X5, which are the variables related to the geometry and strength of the 
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column. The Sobol method also confirms that parameter X1 has a strong influence on the model 

output. 

 
3.3.3.  Classification of inputs variables 

 

From the results of the ANOVA simulations, the parameters can be ranked in order of their 

influence on the output, which is the load-bearing capacity of the column, as shown in Table 5.   

 

From Table 5. above, we can deduce that the diameter of the column represents 61.04% of the 

influence on its load-bearing capacity. 
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4- Discussions 

 

Previously, simulations on the load-bearing capacity formula (formula 2) were carried out with a 

type of fundamental combination (A.3.3,21) and a coefficient K=1.10 for an application of half 

the loads before 90 days (B.8.4,1). In order to seek a maximum spectral amplitude, we will inter-

change the various coefficients involved in the load-bearing capacity of the column by referring 

to the power spectral density of the output Y for the sampled variable X5. 

 

4.1.   Bearing capacity of the column according to combinations of actions 

 

According to article A.3.3,2 of BAEL 91, the loads to be considered result from the following 

combinations of actions, the most unfavourable of which are retained: 

- for the fundamental combinations (article A.3.3,21), in durable or transitional situations, the 

coefficients γb = 1.5 and γs = 1.15 should be considered; 

- for accidental combinations, prescribed by article A.3.3,22 of the BAEL, the coefficients are   γb 

= 1.15 and γs = 1. 

Figure 16 shows the spectral density of the output Y according to formula (2) after sampling the 

variable X5 with respect to the different combinations of actions. 

On the logarithmic scale 100*Log10, we can clearly see that the spectrum with an accidental 

combination represents a much higher amplitude than that of the fundamental combination with a 

difference of 20.22%. We can deduce from this that, in order to achieve maximum spectral 

amplitude, it would be better to use the accidental combination type. 

 

4.2.   Load-bearing capacity of the column according to the duration of the 

loads applied 

 

According to article B.8.4.1 of BAEL 91, the values of the coefficient α (formula 3 and 4) are to 

be divided by 1.10 if more than half of the loads are applied before 90 days. 

The values given for the coefficient were chosen taking into account the hardening of the concrete 

between 28 and 90 days as well as the reduction in the susceptibility to creep in the case of late 

loading. An additional reduction should be applied when the majority of the loads are applied 

before 28 days (the stress fc is taken instead of fc28 and the reduction coefficient is 1.20 instead of 

1.10). 

 

We run the simulation again on the spectral density of the output Y for the sampled variable X5, 

keeping the type of accidental combination and varying the coefficient K. Figure 17 shows the 

results. 

For an accidental combination of loads, here are the results found: 

- K = 1.00 amplitude over 100Log10 : 82.43 dB/Hz 

- K = 1.10 amplitude over 100Log10: 90.71 dB/Hz 

- K = 1.20 amplitude over 100Log10: 97.91 dB/Hz 

We conclude that for the load-bearing capacity of the column, the maximum value of the spectral 

amplitude is found with a type of accidental combination of loads with a coefficient K=1.20 for 

an application of the major part of the loads before 28 days. 
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5- Conclusion 

 

In conclusion, the screening and ANOVA methods have demonstrated their effectiveness and 
reliability throughout this work. Its application to the load-bearing capacity of a circular 
reinforced concrete column confirms the strong influence of column diameter and the 
interaction effects with the model's other input variables. The results once again justify the 
BAEL rules' assumption that concrete resists compression very well. It is therefore sufficient 
to consider a good pre-dimensioning ratio between the geometry and the buckling length of 
the column to ensure its stability. Thus, the reinforcement cross-section reflects very little 
sensitivity.  
In this work, we are limited to the use of sensitivity analysis on an element subjected to 
compression. It would also be interesting to investigate structural elements subjected to 
much more complex loads (compound bending, biaxial bending, tilting, buckling, etc.). 
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7- Tables 

 
Table 1.  Types of compression as a function of slenderness 

 

slenderness Types of compression 
λ ≤ 35  Simple compression 

35 < λ ≤ 50  Simple compression probable 

50 < λ ≤ 70  Possible simple compression (to be verified) 

70 < λ ≤ 150  Possible buckling 

150 < λ  Buckling 

 

 

Table 2.  Variation range of input variables 

 

Variables Designations Variation ranges 

X1 column diameter D (m) [0.10 : 0.60] m 

X2 buckling length Lf (m) ; [1.00 : 10.00] m 

X3 longitudinal reinforcement section As (cm²) [0.192 : 108.11] cm² 

X4 guaranteed steel yield strength fe (MPa) [400 : 600] MPa 

X5 characteristic strength of concrete  fc28 (MPa) [16 : 60] MPa 

  
Table 3.  Mean and standard deviation of input variables 

 

Variables X1 X2 X3 X4 X5 
Mean µ(i) 1.95 0.01 0.51 1.65 3.54 
Standard deviation σ(i) 0.81 0.00 0.00 0.00 0.00 

 

Table 4.  Sensitivity indices by Sobol method 

 

Variables X1 X2 X3 X4 X5 

Total effect 0.6703 0.3105 0.1044 0.0060 0.1426 

Principal effect 0.5400 0.2115 0.0668 0.0022 0.0641 

 

Table 5.  Classification of input variables by degree of influence on output 

 

Variables Designations Percentage 

of influence 

observations 

X1 column diameter D (m) 61.04% Strong influence 

X2 buckling length Lf (m) ; 23.91% Medium influence 

X3 longitudinal reinforcement section As (cm²) 7.55% Low influence 

X5 characteristic strength of concrete  fc28 (MPa) 7.25% Low influence 

X4 guaranteed steel yield strength fe (MPa) 0.25% No influence 
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8- Figures 

 

Figure 1. Modelling of simple compression 

 

 
 

 
 

 
 

 
Figure 2. Buckling length for different connection conditions 

 
 

Figure 3. Buckling length of building columns 
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Figure 4. Crushing of the head of a reinforced concrete column 

 
 

Figure 5. MOHR diagram 
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Figure 6. EFAST spectrum output 

 
Figure 7. Calculation of load-bearing capacity on Excel sheet 
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Figure 8. Sensitivity matrix for load-bearing capacity calculation 
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Figure 9. MOHR plan for load-bearing capacity calculation 

 
Figure 10. Output power spectral density for sampled X1 
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Figure 11. Output power spectral density for sampled X2 

 
 

Figure 12. Output power spectral density for sampled X3 

 
 

 

 

 

 

 

 

 

 

 



 

 
 

 

International Journal of Engineering, Sciences and Technologies 

ISSN : 3079-2045 

https://www.ij-est.org/ 

Volume 2, issue 3, https://doi.org/10.70961/WRZK6238 

 

 

 

Volume 2, issue 3, https://doi.org/10.70961/WRZK6238 

 

ISSN : 3079-2045 

 

Figure 13. Output power spectral density for sampled X4 

 
 

Figure 14. Output power spectral density for sampled X5 
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Figure 15. Sobol graphs for load-bearing capacity 

 
 

 

Figure 16. Output spectral density according to action combinations  
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Figure 17. Spectral density of output according to duration of load application 

 


