Cement life cycle assessment : case study of an integrated industry in Madagascar

RANDRIANANDRASANA Ndrianantso, RANDRIANARISON Mino Patricia , RAHELIARILALAO Bienvenue

Résumé

The cement industry is upstream  from many sectors and contributes to greenhouse gases emissions for all buildings and civil works life cycle. To reduce the emissions, it’s necessary to have the right situation about it. The aim of this studyis to estimate the greenhouse gases emission factors of the cements produced in Madagascar. For this, Life Cycle Assessment, an environmental evaluation’s key tool, normalized by ISO 14040 to ISO 14044 is chosen. The study of two types of cement manufactured by an integrated plant is carried out from the raw materials extraction to the production phase. Greenhouse gases emission factor of 1.29 t CO2 eq is associated to one ton of clinker, generating 0.877 t CO2eq  per ton of  CEM II/B-P 22.5 and 1.122 t CO2eq per ton of CEM II/A-P 32.5 UT-PM.The results can provide a baseline for greenhousegases emission factors of cement in Madagascar and can be used for environmental impact assessment of concrete and cement based-materials.

clinker, emission factor, greenhousegases, carbon dioxyde, methodological framework.

Texte intégral

PDF

References

[1] Hashim, R. ; Khan, M.A. ; Kadhum and M. ; Abdulhadi, B. Development of green cement mortar using industrial by-product. IOP Conf. SER. Earth Environ.Sci, 2022, 1088 012001.

[2] Tkachenko, N. ; Tang, K. ; McCarten, M. et  al. Global database of cement production assets and upstream suppliers. Sci Data 10, 696. https://doi.org/10.1038/s41597-023-02599-w

[3] Nie, S. ; Zhou J.  et al. Analysis of theoretical carbon dioxide emissions from cement production: methodology and application. J Clean Prod. 2022, Vol 334, 130270

[4] Miller, S. A. ; Habert G. ; Myers, R. J.  and John T. Harvey Perspective Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. One earth, 2021, Vol 4, Issue 10, pp 1398-1411.

[5] IEA, Global Energy review, 2021. Retrieved from https://www.iea;org/reports/global-energy-review-co2-emissions-in-2021-2.

[6] Cook G. Cimate change and the cement Industry. Assessing emissions and policy responses to carbon prices. Climate strategies. 2009.

[7] Siddik, M.A. ; Islam, M.T. ; Zaman, A.K.M.M. and Hasan, M.M. Current status and correlation of fossil fuels consumption and greenhouse gas emissions. International Journal of Energy, Environment, and Economics, 2021,28(2): 103-119.

[8] ATILH.  ACV des constructions et ICV des ciments, 2017, DÉCRYPTAGE N°6.

[9] Randrianarison, M.P., Randrianandrasana, N. ; Tsioritiana, A. ; Raheliarilalao, B.  Etude comparative des facteurs d’émission en gaz à effet de serre des produits de terre cuite artisanaux et  semi-industriels. International Journal of Progressive Sciences and Technologies, 2020, Vol. 24, Issue. 1, pp. 76-86.

[10] Randrianarison, M.P. ;  Randrianandrasana, N. ; Raheliarilalao, B. Flux des émissions aériennes et de gaz à effet de serre du charbon de bois par la méthode d’Analyse de Cycle de Vie. International Journal of Progressive Sciences and Technologies, 2021, Vol. 25, Iss. 1, pp. 24-37.

 [11] Randrianarison, M.P. ; Razafiarivony, N.A.T. ; Randrianandrasana, N. ; Raheliarilalao, B. Potentiels d’acidification et de réchauffement climatique des Bois-Energie à Madagascar.International Journal of Progressive Sciences and Technologies, 2020, Vol. 27, Issue. 1, pp.361-370.

[12] Randrianarison, M.P. ; Randrianandrasana, N. ; Razafiarivony, N.A.T. ; Tsioritiana, A. ; Raheliarilalao, B. Emission de gaz à effet de serre du matériau bois utilisé dans la construction par Analyse de Cycle de Vie.  International Journal of Progressive Sciences and Technologies, 2021, Vol. 26, Issue 2, pp. 696-711.

[13] Randrianarison, M.P. ; Randrianandrasana, N. ; Razafiarivony, N.A.T. ; Raheliarilalao, B. Greenhouse gases emission factors of mix electricity generation in Madagascar. J. Mater.Environ. Sci., 2022, 13 (12),  pp 1393-1403.

[14] Guinée, J. Life Cycle Assessment : An Operational guide to the ISO standards. Ministry of Housing, Spatial and Planning and Environment (VROM) and Center of Environmental Science (CML),Den Haag and Leiden, Pays-Bas, 2001, 704Pp.

[15] Cheung, W. M. (2022)  A Cradle-to-Deposition Life Cycle Assessment of Emerging Photovoltaic Materials. International Journal of Energy, Environment and Economics, 2022, 28 (2). pp. 69-86. 

[16] Marwa M. ; Soumaya A. ; Haijaji N. ; Jeday M. R. An environmental Life Cycle Assessment of an indusrial system : case study of industrial sulfuric acid. International Journal of Energy, Environment and Economics, 2020, 25 (4). pp. 255-268

[17] Sandén, B.A. ; Hillman,K.M. ; Karlström, M. ;  Tillman, A-M.. LCA of emerging technologies : a methodological framework . Conference LCM 2005-Innovation by Life Cycle Management, 2005.

[18] Management environnemental - Analyse de Cyclede Vie - Principes  et cadre. International.  Organisation for Standardisation (ISO 14040), Genève, Suisse, 1997.

[19] Management environnemental – Analyse de Cyclede Vie- Définition de l’objectif et du champ d’étude et analyse de l’inventaire. International Organisation for Standardisation (ISO 14041), Genève, Suisse, 1998.

 [20] Management environnemental – Analyse de Cyclede Vie-Évaluation d’impact du cycle de vie.  International Organisation for Standardisation (ISO 14042), Genève, Suisse, 1998.

[21] Management environnemental – Analyse de Cyclede Vie– Interprétation.  International Organisation for Standardisation (ISO 14043), Genève, Suisse, 2000.

[22] Management environnemental- Analyse du cycle de vie- Exigences et lignes directrices. International Organisation for Standardisation (ISO 14044), Genève, Suisse, 2006.

[23] IPTS. Energy consumption and CO2 emissions from the world cement industry.  Institute for prospective, Technological studies, 2003.

 [24] ADEME.  Calcul des facteurs d’émissions et sources bibliographiques utilisées. Chapitre 2 – Facteurs associés à la consommation directe d’énergie. Guide des facteurs d’émissions. Version 6.1. 2010.

 [25] IEPF. Le diagnostic énergétique d’une cimenterie. Fiche technique PRISME n°1, 2001. https://pierrealainmilllet.fr

[26] Hamidi,  M. ;Kacimi, L. ; Clastres P. Environmental and energy assessment of Andesite in cement. MATEC Web of Conferences 149,02048, 2018.  https://doi/10.1051/matecconnf/2018490248

[27] CAR/PP. Manuel de prévention de la pollution dans le secteur du ciment. 2008. http://ww.cprac.org

[28] Bertolini, G. Les contours de la concurrence entre cimenterie et incinération spécialisée de déchet en Europe, Environnement, Ingénierie et Développement.,2008, N° 49, pp 8-13. 10.4267/dechets-sciences-techniques.1415. hal-03174403 OEE Office of Energy Efficiency. Energy Consumption benchmark Guide : cement clinker,  Production. 2021. http://oee.nrcan.gc.ca/infosource.

[29] OEE Office of Energy Efficiency. Energy Consumption benchmark Guide : cement clinker,  Production. 2021. http://oee.nrcan.gc.ca/infosource.

 [30] Alsalman, A.  Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete. Cleaner Environmental Systems,2021, 3, 100047, pp1-1.

[31] JURA CEMENT. Durabilité dans la production. 2021. https://www.juramaterials.ch/fr/durabilite-production/energie;html

[32]  Bouhidel,M. Application d’Analyse du Cycle de Vie (ACV) pour un développement durable : cas des cimenteries algériennes. Mémoire de magister en hygiène et sécurité industrielle option : gestion des risques. Université    El--Hadj lakhdar  Batna, 2009, Algerie