Satellite observations of aerosol and precursor gas distribution in Madagascar

ANDRIAMAMONJY Mbolanjara H., RAMAROSANDRATANA Anzelà M. , RAMAROSON Richard

Abstract

The analysis of the spatio-temporal distribution of aerosols, nitrogen dioxide (NO2), formaldehyde (HCHO), and carbon monoxide (CO) in Madagascar is carried out considering several factors: fire phases and types of fuels burned. Savannah/grassland fires show a low fire radiative power (FRP) of 10 MW, while rainforests display an FRP greater than 100 MW. Early flame combustion generates significant emissions of NO2 (10-4 mol/m2), CO (4.10-4 mol/m2) in the smouldering phase, HCHO (6.10-4 mol/m2), and carbon aerosols (BC and BrC) with UVAI of 1.5. Smouldering combustion produces more CO and less absorbing organic aerosols (UVAI

Satellite observations, aerosol , precursor gas, distribution

Full-text

PDF

References

1-      Références

Ahmed El Nemr ,« Impact, Monitoring and Management of Environmental Pollution ».2010.

Ahmed El Nemr, « Environmental Pollution and its Relation to Climate Change ». 2011.

Allen, M. R., Peters, G. P., Shine, K. P., Azar C., Balcombe P., Boucher O., Cain M., Ciais P., Collins W., Forster P. M., Frame D. J., Friedlingstein P., Fyson C., Gasser T., Hare B., Jenkins S., Hamburg S. P., Johansson D.J. A., Lynch J., Macey A., Morfeldt J., Nauels A., Ocko I., Oppenheimer M., Pacala S. W., Pierrehumbert R., Rogelj J., Schaeffer M., Schleussner C.F., Shindell D., Skeie R. B., Smith S. M., Tanaka K. Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets. Clim. Atmos. Sci. 2022. https://doi.org/10.1038/s41612-021-00226-2

Andriamamonjy, M. H. Étude de la distribution des aérosols, liée aux feux de la biomasse à Madagascar Madagascar par observations satellitaires. 2022. Engineering thesis, Ecole Supérieure Polytechnique d'Antananarivo, Department: Météorology.

Aouizerats, B., van der Werf, G.R., Balasubramanian, R., Betha, R. Importance of Transboundary Transport of Biomass Burning Emissions to Regional  Air Quality in Southeast Asia During a High Fire Event. Atmos. Chem. Phys 2015. doi:10.5194/acp-15-363-2015.

Buchard, V., da Silva, A. M., Colarco, P. R., Darmenov, A., Randles, C. A., Govindaraju, R., Torres, O., Campbell, J., and Spurr, R.: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis. 2015. Atmos. Chem. Phys., 15, 5743–5760, doi:10.5194/acp-15-5743-2015.

Direction Générale de la Météorologie, Atlas climatologique de Madagascar, (2014).

Giglio, L., Schroeder, W., & Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ., 178, 31–41.

IPCC (Intergovernmental Panel on Climate Change). Chapter 6, Short-lived climate forcers. 2021.

Ivar R. van der Velde, Guido R. van der Werf1, Sander Houweling,, Henk J. Eskes, J. Pepijn Veefkind, Tobias Borsdorff2, and Ilse Aben, Biomass burning combustion efficiency observed from space using measurements of CO and NO2 by the TROPOspheric Monitoring Instrument (TROPOMI). Atmos. Chem. Phys., 21, 597–616, 2021. https://doi.org/10.5194/acp-21-597-2021.

Khaled Chetehouna ,« Volatile Organic Compounds: Emission, Pollution and Control ». June 2014.

Kim K-H., Jahan S. A., Lee J-T. Exposure to formaldehyde and its potential human health hazards. J. Environ. Sci. Health C Environ. Carcino.g Ecotoxicol. Rev. 2011, 29(4), 277–299, doi: 10.1080/10590501.2011.629972.

Konovalov I. G., Golovushkin N. A., Beekmann M., Turquety S. Using Multi-Platform Satellite Observations to Study the Atmospheric Evolution of Brown Carbon in Siberian Biomass Burning Plumes. Remote Sens. 2022, 14(11), 2625. https://doi.org/10.3390/rs14112625.

Li, F., Zhang, X., Kondragunta, S., & Csiszar, I. Comparison of fire radiative power estimates from VIIRS and MODIS observations. 2018. Journal of Geophysical Research: Atmospheres,123,4545–4563 https://doi.org/10.1029/2017JD027823.

Lyapustin, A., Wang, Y., Korkin, S., and Huang, D.: MODIS Collection 6 MAIAC Algorithm, Atmos. Meas. Tech., 11, 5741-5765, https://doi.org/10.5194/amt-11-5741-2018, 2018.

Maurits L. Kooreman, Piet Stammes, Victor Trees, Maarten Sneep, L. Gijsbert Tilstra, Martin de Graaf, Deborah C. Stein Zweers, Ping Wang, Olaf N. E. Tuinder, and J. Pepijn Veefkind, Effects of clouds on the UV Absorbing Aerosol Index from TROPOMI, Atmos. Meas. Tech., 13, 6407–6426, https://doi.org/10.5194/amt-13-6407-2020, 2020.

Olstrup H., Johansson C., Forsberg B., Åström C. Association between Mortality and Short-Term Exposure to Particles, Ozone and carbone dioxide in Stockholm, Sweden. Int. J. Environ. Res. Public Health 2019, 16(6), 102, DOI: 10.3390/ijerph16061028.

Optical Mission Performance Cluster , Copernicus Sentinel-3 SYN Land User Handbook, 2023, OMPC.ACR.HBK.003.

Palumbo I., Grégoire J.-M., Simonetti D. and Punga M., Spatio-temporal distribution of fire activity in protected areas of Sub-Saharan Africa derived from MODIS data. 2011. Procedia Environ. Sci., Volume 7, 2011, Pages 26-31.

Prashant Kumar,« Airborne Particles: Origin, Emissions and Health Impacts ». June 2017.

Raga G. B., Kuylenstierna J., Claxton R., Shindell D., Foltescu V., Cong H., Borgford-Parnell N. Addressing black carbon emission inventories, A report by the climate and clean air coalition scientific advisory panel. Climate & Clean Air Coalition to Reduce Short-Lived Climate Pollutants. 2018.

Russell, P. B., Bergstrom, R. W., Shinozuka, Y., Clarke, A. D., De-Carlo, P. F., Jimenez, J. L., Livingston, J. M., Redemann, J., Dubovik, O., and Strawa, A.: Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. 2010. Atmos. Chem. Phys., 10, 1155–1169, doi:10.5194/acp-10-1155-2010.

Sinha P., Jaegle L.´, Hobbs V. P. and Liang Q. (2004), Transport of biomass burning emissions from southern Africa, J. Geophys. Res., Volume. 109, D20204, doi:10.1029/2004JD005044.

Stein A. F., Draxler R. R., Rolph G. D., Stunder B. J. B., Cohen M. D., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc 2015, 2059-2077, DOI: https://doi.org/10.1175/BAMS-D-14-00110.1.

Tahintsoa, G. H. Analyse spatiale et intra-annuelle des surfaces brulées à partir des images Modis en vue d'améliorer la gestion des ressources naturelles à Madagascar. 2018.  Engineering thesis, Ecole Supérieure des Sciences Agronomiques, Department: Foresterie et Environnement.

Tao W-K., Chen J-P., Li Z., Wang C., Zhang C. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 2012, 50. RG2001. doi:10.1029/2011RG000369.

Tryner J., L’Orange C., John Mehaffy J., Daniel Miller-Lionberg D., Hofstetter J., Ander Wilson A., Volckens J. Laboratory evaluation of low-cost PurpleAir PM monitors and in-field Correction using co-located portable filter samplers. 2020. Atmos. Environ. https://doi.org/10.1016/j.atmosenv.2019.117067.

TROPOMI ATBD of the UV Aerosol Index. July 2022. S5P-KNMI-L2-0008-RP, issue 2.1.0.

Winker M. D., Vaughan M. A., Omar A. L., Hu Y., Powell K. A., Liu Z., Hunt W., Young S.. 2009. J. Atmos. Ocean. Technol., Volume 2. DOI: 10.1175/2009JTECHA1281.1.

Wooster, M., Xu, W., & Nightingale, T. Sentinel-3 SLSTR active fire detection and FRP product: pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. 2012. Remote Sens. Environ., 120, 236–254. http://dx.doi.org/10.1016/j.rse.2011.09.033.

Wooster M. J., Freeborn P. H., Archibald S., Oppenheimer C., Roberts G. J., Smith T. E. L., Govender N., Burton M., and Palumbo I.. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs. 2011. Atmos. Chem. Phys., 11, 11591–11615, 2011 doi:10.5194/acp-11-11591-2011.

Wooster, M. J., Zhukov, B., & Oertel, D. Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. 2003. Remote Sens. Environ., 86, 83–107.