Simulations of column load-bearing capacity using Screening and ANOVA methods
Résumé
In this work, we are interested in exploiting the various parametric sensitivity analysis methods for its application to a circular reinforced concrete column subjected to a centered compression force. The equilibrium equations governing the structure are prescribed by the French BAEL 91 rules as a function of input variables linked to the loads on the structure, to the mechanical properties of the materials, and variables linked to the geometry of the part under study. On the one hand, the Morris or screening method enabled us to extract the sensitivity matrix of the physical model studied. After reading and interpreting Mohr's diagram, we saw that the diameter of the column is a highly influential parameter, and that the characteristic strength of the concrete has a linear influence on the load-bearing capacity of the column. On the other hand, methods based on analysis of variance or ANOVA enabled us to carry out a more in-depth analysis and quantitative evaluation in order to study the behavior of each model input variable and rank them in order of influence on the output. By interpretation of the Fourier spectra, post diameter is the most important variable, with a spectral amplitude of 66.68 dB/Hz, i.e. a degree of influence of around 61.04% on load-bearing capacity. In conclusion, sensitivity analysis is a very formidable and reliable mathematical tool, demonstrated throughout this work. Its application is highly recommended to engineers when predimensioning reinforced concrete structures.
Reinforced concrete, simple compression, spectral density, buckling, Morris method, EFAST
References
[1] Saltelli, A., Chan, K., et Scott, E. M., (2004), Sensitivity Analysis, John Wiley & Sons Publication.
[2] Règles BAEL 91 révisées 99, Fascicule 62, titre 1er du CCTG - Travaux section 1 : béton armé, Février 2000
[3] Sobol’, I. M., (1993), Sensitivity estimates for nonlinear mathematical models, Mathematical Modeling & Computational Experiment, 1(4), 407 – 414.
[4] Hervé Monod, Analyse de sensibilité : mesure de l’importance des facteurs par décomposition de la variance. INRA - Unité MIA de Jouy-en-Josas.
[5] Jean-Yves TISSOT, Analyse de sensibilité globale et analyse harmonique : une nouvelle introduction aux méthodes FAST et RBD, Université de Grenoble/INRIA.
[6] A. Collin - F. Anstett-Collin, Analyse de sensibilité appliqué à un modèle de propagation de feux de forêts : Influence de la charge et de l\'humidité de la végétation au sol.
[7] Julien JACQUES, Thèse Doctorat de l’Université Joseph Fourier - Grenoble 1, Contributions à l’analyse de sensibilité et à l’analyse discriminante généralisée, 209 pages.
[8] Julien JACQUES, Pratique de l’analyse de sensibilité : comment évaluer l’impact des entrées aléatoires sur la sortie d’un modèle mathématique.
[9] T. Mara - S. Tarantola Application of global sensitivity analysis of model output to building thermal simulations.
[10] Nadia PÉROT – Bertrand IOOSS, Analyse de sensibilité de modèle Calibration.